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ABSTRACT 
 

 When delivering the total dose via a sequence of small fields shaped by a 

multileaf collimator, it is important to consider leaf positional reproducibility.  A 

small error in the leaf position can result in large dose errors to the entire field.  

This is true for both dynamic multileaf collimation and step and shoot delivery.  

The goal of this research project is to design a method of quality assurance that is 

easily reproducible, sensitive to small changes in leaf position, and requires 

minimal time on the part of the medical physicist to carry out.  This paper 

describes a system of measurements performed with a two-dimensional diode 

array that can be used in conjunction with a leaf edge function determined from 

radiographic film to quickly and easily test the reproducibility of the multileaf 

collimator position with acceptable sensitivity. 
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CHAPTER 1 

INTRODUCTION 

 Radiation was first used therapeutically in the late 1800s.  Radiation 

therapy treatment machines have evolved from very low energy x-ray machines 

into a variety of treatment options that include high-energy electrons, high-energy 

photons, and even heavier particles such as neutrons or protons.  The goal of 

radiation therapy is to kill tumor cells while at the same time limiting the dose to 

normal tissues.  Accomplishing this goal will enhance tumor control probability and 

limit the adverse side effects that result from irradiating healthy tissue.  The target 

volume must be selected to maximize the chance of controlling the tumor.  

Diagnostic data from computed tomography (CT), positron emission tomography 

(PET), and magnetic resonance imaging (MRI) scans can be used to localize the 

tumor.  In addition, clinical experience must be used to choose margins so that 

microscopic cancer cells surrounding the observable tumor volume are included.   

Large doses of radiation to healthy tissues will not only make the patient 

more uncomfortable through the course of treatment but can also leave lasting 

complications, depending upon the type of tissue that is irradiated and the dose 

the healthy tissue receives. For example, radiation exposure to the skin will cause 

temporary reddening, or erythema, of the skin.  More serious side effects, such as 

necrosis, can occur in the skin if sufficient dose is delivered.  Some examples of 

adverse effects associated with irradiation of specific healthy tissues are shown in 

Table 1.1.  These and other side effects associated with different types of tissues 

must be considered in the course of treatment planning.  The radiation oncologist 
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must therefore choose a treatment volume that will encompass the tissues of 

possible tumor cell involvement while minimizing the volume of normal tissue that 

is irradiated.   

Table 1.1.  Examples of tissue-specific side effects 
of radiation. 

Tissue Associated Adverse Effect 

Brain 
Neurologic deficit 

Loss of cognitive function 

Spinal Cord Paralysis 

Lung 
Radiation pneumonitis 

Fibrosis 

Kidney Radiation nephropathy 

Stomach Ulcer 

 

Radiation is conformed to the tumor volume in several different ways.  The 

most straightforward method is blocking non-involved areas from the radiation 

beam.  The physician can outline the radiation area desired on a two-dimensional 

image such as a conventional x-ray or a computer generated view.  The radiation 

beam is conformed to this area by collimators and custom blocks, which will be 

discussed later in this chapter.  To further minimize the amount of radiation 

passing through healthy tissue on the way to the tumor volume, several beams 

may be utilized from different directions to deliver the total dose, rather than a 

single beam.  In this way, doses from the different beams add together to 

maximize the dose to the tumor volume without delivering the maximum dose to 

the healthy tissues.  These beams may be assigned different weights to further 
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limit the amount of radiation passing through especially sensitive structures such 

as the spinal cord.   

With the advent of computer controlled treatment machines and increased 

treatment planning computer capability, it has become possible to further shape 

the radiation distribution in three dimensions.  Intensity modulated radiation 

therapy, or IMRT, is an example of three- dimensional beam shaping and will be 

discussed later in this chapter.  The development of these advanced treatment 

techniques has helped to improve tumor control and cure rates. 

 The first machines used in radiation therapy produced low energy x-rays 

that were only capable of penetrating a few millimeters into tissue.  These units 

are therefore useful to treat only superficial lesions.  An orthovoltage therapy x-ray 

unit has a slightly higher energy in the 200 to 300 kilovolt range.  Many institutions 

still use the lower energy units regularly, especially for the treatment of skin 

lesions (Hendee and Ibbott 1996).  However, due to the low penetrating ability of 

the beams, it is not useful to superimpose different beams, so single beams are 

generally used.  Beam conforming for these machines is limited to shaping 

(blocking) in two dimensions.   

 Higher energy machines capable of producing photon beams in the 

megavolt range were developed to overcome the limitations of the orthovoltage 

units.  One of the early megavoltage units used in radiation therapy is the Cobalt 

unit.  These units contain a radioactive Cobalt-60 source located inside of two 

stainless steel containers that are welded shut to prevent radioactive material from 

escaping.  The source is shielded with materials such as lead or tungsten so that 
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the beam travels in a nearly single direction out of the container when desired.  

The Cobalt units also contain collimators that restrict radiation not traveling in the 

desired direction.  When the Cobalt unit is not in use the source is retracted to a 

fully shielded position to prevent any unintended radiation exposure.  Due to the 

higher energy radiation compared to the orthovoltage units, beams can be 

combined as well as shaped to conform to tumor volumes.  Cobalt units may still 

be found in some radiation departments but have mostly been replaced by linear 

accelerators.   

 Even higher energy radiation beams are provided by medical linear 

accelerators, the machine most commonly used today to deliver high doses to the 

tumor volume (Figure 1.1).  Patients are treated by beams of electrons or x-rays 

that are produced by a linear accelerator.  To produce these beams, electrons are 

accelerated to very high energies using microwaves.  If an x-ray beam is desired, 

a target material is moved into the path of the electron beam.  The electrons 

interact with this material and a photon beam is produced from the target.  The 

photon beam passes through a stationary primary collimator that attenuates 

photons not directed in the desired cone of directions.  The beam is next directed 

through an ionization chamber and a flattening filter.  The current produced in the 

ionization chamber is proportional to the intensity of the radiation beam.  This 

current is converted into monitor units.  The dose to the patient is delivered by 

programming the linear accelerator to produce a certain number of monitor units.  

The purpose of the flattening filter is to differentially attenuate the beam so that a 
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more uniform dose distribution is achieved perpendicular to the beam’s central 

axis at ten centimeters depth.   

 

Secondary 
Collimators

Leaf Motion 

Multileaf 
Collimators 

Figure 1.1.  A Varian linear accelerator head.   The location of the secondary 
collimators, the multileaf collimators and their direction of motion are all 
illustrated. 
 

 Shaping of the radiation beam before it reaches the patient is accomplished 

using several devices.  The first of these is the secondary collimators.  These 

collimators consist of jaws that are under motor control and can be moved to 
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create a rectangular field of any size up to 40 cm by 40 cm at isocenter.  The 

secondary collimator jaws move along an arched path to follow beam divergence 

and shape the beam in two dimensions.  As previously mentioned, in order to 

minimize complications in healthy tissue, areas outside of the tumor volume 

should be shielded from the radiation beam.  Secondary collimators are used to 

shape a rectangular field, but because no tumor volume is rectangular in shape, 

additional methods are needed to further contour the beam to the tumor volume.  

Additional field shaping can be done in either two or three dimensions with a 

tertiary collimator.    

 Traditional tertiary blocking or beam shaping is most commonly 

accomplished by custom-made cerrobend blocks.  Cerrobend, a high-density 

material with a low melting point, may be melted and poured into a custom-made 

mold.  The shape of the mold is specific to each beam used to treat each patient.  

Once the Cerrobend hardens, the custom block is used as a tertiary collimator 

mounted outside the head of the accelerator in the path of the beam to shape the 

field before it reaches the patient.   

 Cerrobend blocks are an effective way to shape the radiation beam, but 

require a time consuming manufacturing process.  Another tertiary collimator that 

almost completely eliminates the need for custom blocks and therefore reduces 

production time is the multileaf collimator (MLC).  A MLC is made up of many 

opposed pairs of small leaves mounted into two carriages on either side of the 

field.  The leaves may be extended under motor control to shape a field that is 

conformal to the tumor volume.  The location of the MLC on the accelerator head 
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depends upon the accelerator manufacturer.  Some manufacturers replace one 

pair of secondary collimator jaws with leaves, in which case the MLC is not a 

tertiary collimator.  “The disadvantage of having the MLC leaves so far from the 

accelerator isocenter is that the leaf width must be somewhat smaller and the 

tolerances on the dimensions of the leaves as well as the leaf travel must be 

tighter than for other configurations” (Boyer et al 2001).  Tighter tolerances for leaf 

travel are required closer to the target because the further away the leaf is from 

isocenter, a small error in leaf positioning will translate to a larger distance at 

isocenter.  The smaller leaf size in multileaf collimators that replace the secondary 

jaws can also be an advantage because the leaves do not need to be as long and 

therefore decrease the size and bulk of the treatment head.  Manufacturers that 

design the MLC as a tertiary collimator mount the MLC leaf banks just below the 

secondary collimator jaws, as shown in Figure 1.1.  A disadvantage of this method 

is that it increases the bulk of the treatment head.  Also, the amount of clearance 

between the treatment head and the patient may be decreased if custom blocks or 

wedges are used along with multileaf collimation (Boyer et al. 2001).   

 In addition to varying positions of the MLC, multileaf collimators also vary in 

their direction of leaf motion and leaf shape according to the MLC manufacturer.  

Some manufacturers use a “focused” MLC in which the leaf carriages travel in an 

arch to follow beam divergence.  In other machines, the leaves move only in a 

plane perpendicular to the treatment beam.  This is a “nonfocused” multileaf 

collimator that does not follow beam divergence.  The leaf edges for this type of 

MLC must be rounded in order to produce an acceptable penumbra.  Sun and Zhu 
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define the penumbra as “the region at the edge of a radiation beam over which the 

dose changes rapidly as a function of distance from the beam axis” (1995).  The 

penumbra is described mathematically by an edge function.  Edge functions and 

penumbra will be discussed in greater detail in chapter three.   

There are two ways to describe the edge of the leaf.  First is the physical 

edge of a leaf which is measured by the shadow of the light field.  Second is the 

radiographic edge of the leaf, which is considered to be the point in the radiation 

field that is fifty percent of the intensity of an open field.  In this project, all 

references to the leaf edge correspond to the radiographic edge, not the physical 

edge.  It is possible with a rounded leaf edge that the penumbra is wider than that 

of a focused leaf.  There is also some concern that the penumbra of a rounded 

leaf edge can change with distance off axis (Boyer et al. 2001).  In addition, the 

edge of the light field does necessarily agree with the radiation beam edge for a 

rounded leaf end at off-axis locations.  The sides of each leaf have a tongue and 

groove design in order to minimize inter-leaf leakage.  Figure 1.2 shows a single 

leaf from a multileaf collimator, illustrating the rounded leaf edge and the tongue 

and groove design of the sides of the leaf. 

Another application of the tertiary collimator is three-dimensional beam 

shaping.  Three-dimensional shaping of the radiation beam results in a modulated 

intensity throughout the treatment field.  This treatment technique is called 

intensity modulated radiation therapy (IMRT).  IMRT treatments provide a better fit 

to the tumor volume than previous conformal radiation therapy.  Figure 1.3 shows 

a comparison of the fit of the dose delivered with an IMRT plan to that delivered 
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with a conventional conformal therapy plan.  IMRT treatment plans are created 

with an inverse planning technique.  In inverse planning, the physician is able to 

specify the dose to be delivered to the tumor volume and may also enter the dose 

limits to the healthy structures surrounding the tumor volume.  These values are 

entered into a treatment-planning computer, which then creates a plan that 

matches the specified parameters as closely as possible.  The IMRT plan is 

delivered as a combination of fields entering the patient from different angles.  

Either compensators or multileaf collimators are used to modulate the intensity of 

each beam. 

Compensators are made by varying the thickness of a particular material to 

partially attenuate the beam before it reaches the tumor volume.  The material 

used in the compensator varies depending on the amount of attenuation required.  

The compensator material covers the entire field and is mounted to the outside of 

the treatment head.  Compensators are usually used in conjunction with custom 

blocks for additional beam shaping.  

To create intensity modulated fields with a MLC the leaves are moved to 

shape very small field sizes.  Varying amounts of monitor units determined by an 

inverse planning algorithm are delivered to these small fields to closely fit the dose 

only to the tumor volume.  Two different methods are used to deliver intensity-

modulated fields with a multileaf collimator:  dynamic multileaf collimation and step 

and shoot delivery.  In dynamic multileaf collimation, the leaves are in constant 

motion throughout the beam delivery.  In step and shoot delivery, the beam 

delivery is paused while the leaves are repositioned. 
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Direction of 
beam travel 

Direction of 
Leaf Motion 

Direction of 
beam travel 

Figure 1.2.  A single leaf from a multileaf collimator.  This picture shows in detail 
(a) the rounded leaf edge and (b) the tongue and groove design of the sides of the 
leaves, as well as indicating the direction of beam travel with respect to the leaf. 
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(a) 

 
(b) 

Figure 1.3.  Comparison of IMRT and conventional 3-D radiation therapy.  The 
plan shown in (a) is a conventional three-dimensional radiation therapy prostate 
treatment plan and (b) is an IMRT prostate treatment plan.   
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 When delivering the total dose via a sequence of small fields shaped by a 

multileaf collimator, it is important to consider leaf positional reproducibility.  As will 

be discussed in detail in the next chapter, a small error in the leaf position can 

result in large dose errors to the entire field.  This is true for both dynamic multileaf 

collimation and step and shoot delivery.  This research project will attempt to 

design a method of quality assurance that is easily reproducible, sensitive to small 

changes in leaf position, and requires minimal time on the part of the medical 

physicist to carry out.  This project describes a system of measurements 

performed with a two-dimensional diode array that can be used in conjunction with 

a leaf edge function to quickly and easily test the reproducibility of the multileaf 

collimator position with acceptable sensitivity.  
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CHAPTER 2 

REVIEW OF LITERATURE 

 The introduction of multileaf collimators into radiation oncology has 

provided many advantages, while at the same time introducing new challenges.  

Multileaf collimators, when used as a replacement for conventional blocks, reduce 

the time required by eliminating the block production process, as well as reducing 

the time required for the radiation therapist to set up between sequential fields 

(Jordan and Williams 1994).  However, with advances in technology such as 

intensity modulated radiation therapy (IMRT), the leaves of a multileaf collimator 

may be utilized in a manner beyond what was originally intended (LoSasso, Chui, 

and Ling 2001).   Additional quality assurance methods are therefore needed to 

ensure normal leaf function and accurate leaf position.   

There are several possible causes of error in leaf position addressed in the 

literature.  LoSasso et al. found that leaf positional inaccuracy “appears to be 

related to the amount of usage of individual leaf motors”.  LoSasso et al. found that 

after IMRT was initiated at their facility, leaf motors had to be replaced more often.  

The leaves at the center of the multileaf collimator were found to be the most 

susceptible to motor failure.  These center leaves are used for prostate IMRT 

treatments at their institution (2001).  LoSasso, Chui, and Ling also cite loss of 

counts in the primary leaf position encoders as a source of leaf position error.  

They state, “On occasion that the chronic loss of counts of a primary encoder 

becomes excessive, leaf position errors could exceed 0.5 mm at isocenter.  

Reinitializing the MLC will temporarily alleviate the problem, but position errors 
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may go unnoticed because an interlock will not be activated until the error reaches 

2 mm”.  LoSasso, Chui, and Ling recommend a semi-weekly test to check for 

these types of encoder errors (2001).  Two other sources of uncertainty according 

to Budgell et al. are “the precision of the MLC control system” and “the absolute 

accuracy of calibration of the MLC leaf positions”.  Budgell et al. assert, “If leaves 

are calibrated within ±1 mm, an MLC controller precision of 0.1 mm can only 

guarantee an absolute positional accuracy of ±1.1 mm” (2000).  According to 

LoSasso, Chui, and Ling, a “1 mm error in the calibrations of the jaws and leaves 

can be tolerated” when the multileaf collimator is being used only to shape a static 

field.  In IMRT treatments “leaf movements need to be executed much more 

precisely.  Therefore, a much tighter tolerance of ~0.2 mm” is necessary (2001).   

The American Association of Physicists in Medicine Task Group No. 50 

describe calibration of the leaf position for a Varian multileaf collimator in the 

following way: 

The Varian MLC calibrates the leaf positions using narrow infrared 
beams built into the collimator assembly that transect the paths of the leaves.  
The calibration procedure is carried out automatically each time the MLC 
operating system is initialized.  Each leaf is driven through its range of travel.  
As a given leaf intersects the infrared beam, the values returned by its 
position encoders are acquired.  These values are used … to calibrate the 
leaf position.  The calibration values are saved in a table for use by the 
control system.  (Boyer et al. 2001) 

 
This calibration procedure is a very important step to ensure leaf positional 

accuracy.  According to Boyer et al., “periodic checking and recalibration are also 

needed to ensure the integrity of the controlling system” (2001). 

Several researchers have documented the importance of quality assurance 

of multileaf collimator leaf stability.  Budgell et al. state that in dynamic multileaf 
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collimation used for IMRT, a 1 cm slit traveling across a distance of 10 cm can 

have up to a 10% change in dose for a 1mm change in the width of the slit due to 

leaf position inaccuracy in dynamic multileaf collimation.  According to Budgell et 

al., “leaf position errors will normally not cause dosimetric errors in step and shoot 

deliveries except for very thin fields for which output factor is strongly dependent 

on field width” (2000).  Low et al. state that accuracy in leaf positioning for step 

and shoot deliveries is very important in regions where there are multiple sub field 

abutments.  Low et al. also state, “errors in leaf positioning will cause 

corresponding errors in the delivered dose in the abutment region, with the dose 

errors proportional to the penumbra slope at the edge of each sub field.”  Low et 

al. concluded that errors in the abutment regions of sub fields could cause 16.7% 

dose errors for 6 MV photons for each millimeter of error (2001).   

According to Chui, Spirou, and LoSasso, “positional inaccuracy of the 

leaves may affect the dose distribution everywhere within the field” (1996).  This is 

a major difference from conventional blocking with multileaf collimators.  In 

traditional blocking, the leaves are set to a single position throughout the entire 

treatment, so an error in leaf position will affect only the area just inside the block.  

With dynamic multileaf collimation, an error in a single leaf’s position can be 

carried across the entire field, leading to hot spots if the leaf is lagging behind or 

cold spots if the leaf is in front of its intended position (Chui, Spirou, and LoSasso 

1996).  Hot and cold spots can also result in step and shoot deliveries in the areas 

of multiple sub-field abutments.  These findings emphasize the importance of 
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assuring leaf positional accuracy when the multileaf collimator is being used 

clinically for IMRT in either the dynamic or step and shoot mode.  

Many different quality assurance procedures have been proposed in the 

literature.  LoSasso, Chui, and Ling recommend a semi-weekly test using Kodak 

V2 Ready Pack film to verify leaf positions at the end of the treatment day.  This 

test exposes the film to “a DMLC field that produces a matrix of high intensity 

regions, 1 mm wide and spaced 2 cm apart”.  If any leaf position is off by more 

than 0.2 mm, that leaf’s motor must be replaced.  The physicist evaluates the film 

visually without having to digitize it.  This decreases the time required for 

evaluation, an important point for any QA process (2001).  LoSasso, Chui, and 

Ling also introduced a quality assurance method that uses a cylindrical ion 

chamber to measure the dose “for a uniform field delivered dynamically with a 

small, 0.5-cm-wide, sweeping gap”, which is normalized to a static 10 x 10 cm2 

field created by collimator jaws.  The authors state that this method is “capable of 

detecting less than 0.1 mm deviation” in the leaf position (1998). 

Budgell et al. created a test to measure daily variation in leaf position using 

a 1 cm slit formed only with the leaves.  This slit moves across a distance of 10 

cm.  Budgell et al. found that  “a 1 mm change in slit width leads to a 10% change 

in dose” making this test very sensitive to inaccuracies in position.  The doses 

were measured with an ionization chamber and normalized to a 10 cm x 10 cm 

static field (2000).  Another test was devised by Chui, Spirou, and LoSasso to be 

used as a routine quality assurance check.  In this test, “the paths of the left and 

right leaves were intentionally offset by 1 mm to produce hot spots on the resultant 
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intensity profile”.  If the leaves are traveling to their intended positions, lines of 

increased intensity will be shown on film at equally spaced intervals.  The widths of 

these hot spots are easily determined by visual inspection.  This provides a quick 

and easy way to identify leaf positional inaccuracies on a daily basis (1996).     

LoSasso, Chui, and Ling have also tested accuracy of leaf position with 

gantry angle.  LoSasso, Chui, and Ling performed the previously mentioned 0.5 

cm wide sweeping gap test at gantry angles of 0, 90, 180, and 270 degrees “to 

assess the effect of gravity on the performance of the multileaf collimator in 

dynamic mode.”  The dose delivered was measured with a cylindrical ion chamber 

at isocenter and was found to be independent of gantry angle (1998). In a 

separate quality assurance test, LoSasso, Chui, and Ling used the Sun Nuclear 

Corporation Profiler, a diode array, to measure relative dynamic multileaf 

collimator output at gantry angles at 90 and 270 degrees. They found that “small 

variations were observed on the central axis, consistent with the ion chamber 

measurements, but larger variations exist at off-axis points” (2001).  Chui, Spirou, 

and LoSasso state that their previously mentioned quality assurance test that 

produces high intensity lines at equally spaced intervals can be performed with the 

gantry angle at ninety degrees with the collimator turned so that “the leaves move 

perpendicular to the floor to maximize the gravity effect” to test the effect of gravity 

on leaf positional accuracy (1996). 

Most of the quality assurance procedures discussed in the literature involve 

using radiographic film and/or ion chambers.  Other research has been carried out 

to determine the usefulness of diode arrays compared to film and ion chamber 
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measurements.  According to Paul Jursinic, the biggest advantage of using diodes 

is the immediate availability of the results.  Jursinic also states, “other advantages 

of diodes include high sensitivity, good spatial resolution, small size, simple 

instrumentation…ruggedness, and independence from changes in air pressure” 

(2001).  According to Essers and Munheer, another advantage of diodes is “the 

sensitivity per unit volume of a diode is about 18,000 times higher than for an air-

filled ionization chamber” (1999).  To evaluate the intensity profile produced using 

dynamic multileaf collimation, Papatheodorou et al. used radiographic film, point 

measurements from a cylindrical ion chamber, and the SNC Profiler 1170 linear 

diode array.  Papatheodorou et al. found very good agreement between the 

profiles measured by the Profiler and the ion chamber.  They concluded that the 

diode array is “a very useful tool for measuring intensity profiles with the condition 

that the relative sensitivity of diodes is carefully corrected” (2000).  Zhu et al. also 

evaluated the SNC Profiler as a tool for measuring the profiles of enhanced 

dynamic wedge dosimetry.  Zhu et al. found the diode array to be about twenty 

times faster than an ion chamber for quality assurance purposes, with very good 

agreement between the measured profiles.  Zhu et al. concluded that a diode 

array, specifically the Profiler, “provides good spatial resolution and is useful for 

commissioning a dynamic wedge” (1997).  Hansen et al. used the Schuster BMS-

96 diode array to measure beam profiles of small radiation segments.  The diode 

array was used because the dose was delivered by 10 MU and that is not enough 

time for a scan across the beam that is used during the standard calibration 

procedure.  According to Hansen et al., “This device is ideal for profile 
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measurements of any segment size, and can measure profiles for field sizes up to 

40 cm” (1998).   

Although much research has been done on multileaf positioning, most of 

the work was done with cylindrical ion chambers, film, or a linear diode array.  The 

diode arrays were shown to be less time consuming than film or point 

measurements from an ion chamber and the profiles measured with the diode 

array were in good agreement with the film and ion chamber measurements.  A 

two-dimensional diode array should be able to provide more information over an 

entire field, in a more efficient manner than film or an ion chamber, about the 

multileaf performance at a variety of off-axis points.  By mounting the diode array 

to the gantry, the diode array can also be used to test multileaf positional 

reproducibility at any gantry angle.   
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CHAPTER 3 
 

MATERIALS AND METHODS 
 

3.1 Description of the Multileaf Collimator 

 The multileaf collimator used for this research was a Varian Medical 

Systems Millennium MLC-120, mounted below the secondary collimators on a 

Varian Clinac 21 EX linear accelerator.  The bottom of the multileaf collimator is 

53.5 cm from the linear accelerator target, which corresponds to a distance of 46.5 

cm from isocenter.  The isocenter of the machine “is the point of intersection of the 

collimator axis and the gantry axis of rotation” (Khan 1994).  The isocenter for the 

21 EX is at a distance of 100 cm from the source.  The total field size of the 

multileaf collimator is 40 cm x 40 cm, shaped by 120 individual leaves.  This 

multileaf collimator has two different leaf widths.  The central 20 cm of the field is 

shaped by leaves with a 0.5 cm projected width at isocenter and the leaves that 

shape the outer 20 cm of the field project a 1.0 cm width at isocenter.  The leaves 

are mounted within two carriages and each leaf can move to a maximum 

extension of 15 cm at isocenter from the carriage.  The individual leaves have a 

rounded edge and the sides of the leaves have a tongue and groove arrangement 

to minimize leakage as illustrated in chapter one. 

3.2 Description of the Diode Array 

 The diode array used in this research was a prototype version of the 

MapCheckTM two-dimensional therapy beam measurement system made by Sun 

Nuclear Corporation of Melbourne, Florida.  The prototype contains a 10 cm x 10 

cm array of 221 diodes.  The active detector area of the diodes is 0.8 mm x 0.8 
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mm.  The diodes are spaced 1 cm apart on each row and each row is spaced 5 

mm apart, as shown in Figure 3.1.  The inherent buildup on top of the diodes is 

about 1.32 g/cm2.  The physical distance of this buildup is 1.13 cm. 

 

 

Column 11 

Row 11 
Calibration 
Row 12 

 
 

Calibration 
Column 12 

Figure 3.1.  The Sun Nuclear Corporation prototype diode array.  Row 11 and 
column 11 are the central axis of the diode array.  Row 12 and column 12 are the 
locations used for calibrating the array and are marked “CAL” on the face of the 
array. 
 

The prototype diode array comes with its own software.  The diode array 

was connected to a personal computer using the same data port that is used for 

the Profiler also made by Sun Nuclear Corporation.  Each time the software was 

started, a background measurement had to be acquired and the diode array had to 

 21 



either be calibrated or a previous calibration file must be loaded.  To calibrate, the 

central axis of the diode array (row 11, column 11) was first aligned with the 

machine crosshairs. The diode array was placed on top of the couch at a source to 

surface distance of 100 cm.  The field size is set to 15 cm by 15 cm using the 

secondary collimator jaws.  Three separate doses of 200 cGy were delivered, with 

the diode array rotated clockwise 90 degrees between the three 200 cGy dose 

deliveries.  The machine crosshairs were then aligned with the row and column 

marked “cal” (row 12, column 12) on the diode array and another 200 cGy dose 

was delivered.  The calibration file was then saved so that it could be used in 

future acquisitions without having to recalibrate the diode array.  Once background 

was acquired and a calibration file was loaded, the diode array was ready to 

acquire data.  The results from all measurements included raw counts as well as 

corrected counts and were saved as both binary and ASCII files.  The acquired 

data were easily adaptable into a spreadsheet program.  

3.3 Diode Array Output Variability 

 To determine the variation in the response of the diode array between 

sequential readings, ten separate readings under identical conditions were taken.  

The diode array was placed at the central axis with a source to surface distance of 

100 cm.  The multileaf collimators were retracted and the secondary collimators 

were set to a 15 cm x 15 cm open field.  Thirty monitor units of 10 MV photons 

were delivered ten times in succession with the output recorded between each 

delivery.  There was no change in the setup of the diode array between readings. 
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3.4 Description of an Edge Function 

A collimator placed into a beam of radiation will attenuate the portion of the 

beam that passes through it.  However, at the edge of the collimator, the region at 

the edge of the beam will have a rapidly changing dose with distance from the 

edge.  This is the penumbra of the beam discussed in the introduction.  The 

penumbra occurs for two reasons.  First, because the radiation source, i.e. the 

linear accelerator target, has some finite size.  Therefore, the photons produced to 

one side of the target will pass the collimator at some angle and not be absorbed.  

These photons cause the amount of radiation just underneath the collimator edge 

to be some value between fifty percent of the maximum value within the open field 

and zero.  The second reason for the penumbra is photons that are partially 

attenuated but still transmit through the very edge of the collimator.  According to 

Sun and Zhu, the amount of radiation transmitted is dependent upon “field size, 

the distance from the x-ray source, and the collimator edge” (1995).  The 

mathematical relation that describes the shape of the edge of the radiation beam 

as it rapidly changes from some maximum value within the field to near zero 

underneath the collimator is called an edge function.  The shape of an edge 

function varies among different collimators depending upon their shape and 

whether the direction of travel is in line with beam divergence.  Figure 3.2 shows a 

typical edge function produced by a collimator edge. 

3.5 Determining the Edge Function of a Single Leaf 

 Two separate methods, one using radiographic film and the other using the 

diode array, were used to experimentally determine the edge function of a single 
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leaf.  The film edge function was measured by a single exposure of 30 cGy to the 

film with a single leaf extended.  The diode array edge function was determined by 

moving the leaf across a single diode in 1 mm increments through a total distance 

of 4.8 cm. 
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Figure 3.2.  A typical edge function from a collimator edge.  The edge function 
ranges from a value of 1.0 at a position inside of the field to a value of zero outside 
of the field (underneath the collimator). 
 

To determine the edge function with film, radiographic film (X-Omat V, 

Eastman Kodak Company, Rochester, NY) was placed in a water-equivalent 

phantom at the depth of maximum dose for 10 MV, with a source to surface 

distance of 100 cm.  In this case the thickness of water-equivalent material 

covering the film was 2.5 cm.  The secondary collimators were set to a 15 cm x 15 

cm field size.  The leaves of the multileaf collimator were also set to a 15 cm x 15 

cm field size, with a single leaf along the central axis extended to its zero position. 
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The zero position of a leaf is located at the central axis of the machine.  With the 

single multileaf extended, the film was exposed to 30 monitor units of 10 MV 

photons, or approximately 30 cGy. 

 Using a Vidar Systems Corporation VXR-12 plus film digitizer, the film was 

entered into the RIT113 Film Dosimetry System (Radiological Imaging 

Technology, Colorado Springs, CO) for analysis.  The film was digitized with a 

resolution of 169 microns.  To determine the edge function of the single extended 

leaf, a profile was taken at the center of the image of the extended leaf using the 

orthogonal profiles function in the RIT113 system and converted into an ASCII file.  

Only the profile running parallel to the leaf was used to determine the edge 

function.  The ASCII data from the profile were then imported into a spreadsheet 

program.  The data were first normalized to the maximum value on the central axis 

and then fitted to two functions using the following algorithm: 

 Eq. 3.1 Inner:  Pi(x,y,z)=1 – 0.5 x e(-ain  x  dis(x,y) / p(z)) 

 Eq. 3.2 Outer:  Po(x,y,z)=T0 + (0.5 – T0) x e(-aout   x   dis(x,y) / p(z)) 

where: 

Inner = the edge function described by the portion of the data in the open 

part of the field, 

Outer = the edge function described by the data covered by the leaf, 

 dis(x,y) = Distance of the point from the leaf edge,  

T0 = jaw transmission factor (normalized to zero in this project), 

 ain and aout = fitting parameters determined from the measured data, 

p(z) =  (SAD-SJD-z)/SAD-SJD). This is a dis(x,y) correction factor for 
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penumbral fit, p(z)=1 on the isocentric plane, 

SAD = Distance from linear accelerator x-ray source to isocenter, 

SJD = Distance from the source to the bottom of the multileaf collimator jaw 

edge along the beam axis. 

These two functions represent the best fit to the measured edge function data.  

These algorithms are from the X-Knife® version 4.0 User’s Manual published by 

Radionics Software Applications, Inc.  Once the fitting parameters were 

determined from the measured data, the x, y position of any leaf could then be 

determined by entering the percentage into the inverse of the function.  It is 

important to note that all of the edge functions were varied in one dimension only 

for this project.  Edge functions were fitted using equations 3.1 and 3.2 for each of 

the six leaves studied in positions both on and off the central axis. 

 To determine the edge function parameters with the diode array, the array 

was placed at a source to surface distance of 100 cm.  The field size was set to 15 

cm by 15 cm using both the secondary jaws and the multileaf collimator.  The 

diode array was lined up so that the single extended multileaf would pass directly 

over the central row of diodes.  This position was approximately 2.5 mm offset 

from the central axis. The single multileaf was programmed to stop approximately 

every millimeter from 2.4 cm left of the center to 2.4 cm right of the center.  At 

every stop, 30 monitor units of 10 MV photons were delivered to the diode array 

and the output was recorded.  The edge function was constructed by normalizing 

the data to an open field reading, then charting the reading of the central diode at 

every stop of the multileaf.  An edge function was measured with the diode array 

 26 



only for leaf 30B for comparison to the edge function determined from the film 

data.  Figure 3.3 illustrates the effect on the edge function of moving a single leaf 

while the diode remains stationary.  The diode is able to remain stationary and 

measure leaf displacement because as the leaf moves, the edge function moves 

along with the leaf.  Therefore, the diode array is measuring a different location on 

the edge function curve as the leaf moves over it. 

 
Figure 3.3.  Effect of leaf displacement on diode readings.  The curves represent 
the beam intensity near the edge of the field (edge functions).  The diode is 
positioned at the original beam edge (solid lines) and reads 50% of the signal 
received in the open field.  When the leaf is displaced slightly (dashed lines), the 
edge function follows the projection of the leaf edge.  The diode, which remains 
stationary, consequently yields a different reading corresponding to the edge 
function value at the diode position.  The diode reading can therefore be used in 
conjunction with the edge function to measure leaf displacement. 
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3.6 Testing Multileaf Positional Reproducibility on the Central Axis 

 The reproducibility of the position of a single multileaf was tested under 

several different conditions.  The different tests alter the extension of a single leaf 

from the rest of the leaves in the multileaf collimator carriage containing the 

extended leaf to determine whether this has an effect on the reproducibility of the 

position of the multileaf between data acquisitions.  All of these tests were 

performed with the diode array at a 100 cm source to surface distance. 

 Three different leaf extensions were tested for each of six different leaves, 

three leaves from each carriage. The distances of the leaves tested from the 

central axis are shown in Table 3.1.  The locations of these leaves are illustrated in 

Figure 3.4.  For each test, the secondary collimators were set to a 15 cm x 15 cm 

field size.  The gantry angle and the collimator angle were both 180 degrees.  For 

each leaf, the leaf position that corresponded to an approximately fifty percent 

response from the central diode in the array relative to an open field was 

determined experimentally.  This fifty percent position was then used in each of 

the tests.  These positions are shown for each leaf in Table 3.2.  The same diode 

in the array was used to test each leaf.  Only one diode was used in order to 

eliminate another variable that would be introduced into the experiment if different 

diodes were used for each test.  The diode array was moved to a different position 

for each leaf so the central diode was at the center of each leaf being tested.  

3.6.1 2.0 cm Leaf Extension 

 The first reproducibility test was performed with the secondary collimators 

set to a 15 cm x 15 cm field.  This test extended the leaf 2.0 cm from the rest of 
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the leaves in the carriage.  The single extended leaf was set to its experimentally 

determined fifty percent position.  The opposite carriage not containing the leaf to 

be extended is fixed at 7.5 cm.  Twenty-five measurements were taken, retracting 

and re-extending the multileaf collimator between measurements.  An illustration 

of this field for leaf 30 on carriage B is shown in Figure 3.5(a). 

Table 3.1.  Location of leaves tested relative to the central axis. 

Leaf 
Number Leaf Width Leaf Location 

6 1.0 cm 14 cm to 15 cm from central axis 

19 0.5 cm 5.5 cm to 6 cm from central axis 

30 0.5 cm 0 cm to 0.5 cm from central axis 
 

Table 3.2.  Approximate fifty percent positions. 

Leaf Position 
Diode Response 
Relative to Open 
Field Response 

6A 0.12 cm to left of central axis 53.1% 

6B On central axis 52.3% 

19A 0.12 cm to left of central axis 49.7% 

19B 0.11 cm to right of central axis 45.4% 

30A 0.12 cm to left of central axis 47.9% 

30B 0.11 cm to right of central axis 46.2% 
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Carriage B Carriage A 

Leaf 30B Leaf 30A 

Leaf 19B Leaf 19A 

Leaf 6B Leaf 6A 

Figure 3.4.  An illustration of the locations of the leaves tested within the multileaf 
collimator.  The dark line represents the central axis of the machine.  The 
highlighted leaves are the six leaves that were tested. 
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3.6.2 7.5 cm Leaf Extension 

 The multileaf collimator was programmed to form a 15 cm by 15 cm box, 

with a single leaf extended to the center of the field in the fifty percent position 

discussed previously.  The edge of the extended leaf was 7.5 cm from the edges 

of the rest of leaves in the carriage.  The carriage not containing the extended leaf 

was set to a distance of 7.5 cm from the edge of the extended leaf, the same 

distance as for the previous experiment.  Twenty-five separate measurements 

were then taken with the leaf in this position.  Between each acquisition the 

multileaf collimator was retracted and then returned to the extended position.  An 

image of the setup for leaf 30 on the B carriage is shown in Figure 3.5(b). 

3.6.3 15.0 cm Leaf Extension 

 For this reproducibility test, the edge of the extended leaf was extended 15 

cm from the rest of the leaves in the carriage.  15 cm is the maximum distance that 

any single leaf can be extended from the rest of the leaves in the carriage.  The 

extended leaf was set to the position that gave an approximately fifty percent 

response on the diode array.  The carriage not containing the leaf was set to a 

distance of 7.5 cm from the edge of the extended leaf.  Twenty-five readings were 

taken, again retracting and re-extending the multileaf collimator between 

measurements.  An example of the multileaf field for leaf 30 of carriage B is shown 

in Figure 3.5(c). 

3.7 Testing Multileaf Positional Reproducibility Off Axis 
 To test positional reproducibility off axis, each leaf being tested was 

extended 10 cm across the central axis.  The secondary collimators were set to a 

15 cm by 15 cm field size around the extended leaf.  The diode array was at a 100 
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cm source to surface distance.  The same six leaves were tested, three on each 

carriage.  To determine the approximate fifty percent position for each leaf, the 

diode array was placed so that the leaf would travel directly over a single row of 

 
(a) 2 cm leaf extension    (b) 7.5 cm leaf extension 

 
(c) 15 cm leaf extension 

Figure 3.5.  Multileaf collimator leaf extensions:  (a) Leaf 30 is extended 2 cm from 
the rest of carriage B, (b) Leaf 30 is extended 7.5 cm from carriage B, and (c) Leaf 
30 is extended 15 cm from carriage B.  Carriage A stays in the same position for 
all three leaf extensions.  
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diodes.  The same diode used in the central axis test was placed directly under the 

leaf edge.  The diode array was exposed to 30 monitor units of 10 MV photons 

with and without the leaf extended.  The diode array was moved laterally until the 

diode gave an approximately fifty percent response with the leaf extended relative 

to the response in the open field.  Once the approximate fifty percent position was 

determined, 25 readings were recorded.  The multileaf collimator was retracted 

and re-extended between each of the 25 readings.  

 The 2 cm, 7.5 cm, and 15 cm leaf extensions were tested with each leaf 

extended to 10 cm off axis.  Twenty-five readings were taken for each leaf in each 

of the three leaf extension positions.  The carriage not containing the leaf to be 

extended was set to a distance of 7.5 cm from the edge of the extended leaf and 

not moved for the different leaf extensions.   
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CHAPTER 4 
 

RESULTS 
 

4.1 Diode Array Output Variability 

To determine the variability in the output of the diodes in the diode array, 

ten measurements were taken and compared.  Figure 4.1 shows the fluctuation in 

the response of the diodes along the central axis column in the diode array.  

Figure 4.2 shows the fluctuation in the response of the diodes along the central 

axis row in the diode array.  Each reading was normalized to the average of the 

ten readings for each of the diodes.  Only the center diode in the array was used 

for this project, but the diodes along the central axis row and column were also 

compared to show that the center diode had the same variability as the other 

diodes in the array. 

4.2 Edge Function Comparisons 

Before analyzing the multileaf positional reproducibility, a standard to 

convert the change in diode response to a corresponding distance was developed.  

Several different factors were considered in this process.  An edge function 

developed with film was needed to determine the distance corresponding to the 

change in diode response because film response has a much finer resolution than 

diode response.  However, in order to use film to estimate the distance, the edge 

function from the diode array had to be shown to be comparable to the edge 

function from film.  Once the edge functions were found to be comparable, the 

next step was to determine the edge function or functions that should be used to 

evaluate the distance corresponding to the diode response.  To do this, edge
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Figure 4.1. Fluctuations in the diode response along the central axis column of the diode array.  Each point corresponds 
to a different acquisition for a particular diode normalized to the average of ten readings for that diode. 
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Diode Response Fluctuations
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Figure 4.2. Fluctuations in the diode response along the central axis row of the diode array.  Each point represents a 
different acquisition for a particular diode normalized to the average of ten readings for that diode. 
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 functions were compared for both central axis and off axis positions for each leaf.  

The edge functions were also compared between the different leaves to determine 

whether or not they could be represented by a single standard function.  Once the 

edge functions to be used were determined, the response from the diode array 

could then be converted to a distance for every situation tested for each leaf. 

4.2.1 Film Edge Function vs. Diode Array Edge Function 

To determine whether the edge functions from film data could be used to 

determine leaf positional reproducibility from the diode array measurements, edge 

functions from film and from the diode array were compared.  The data from both 

film and the diode array were normalized to zero at a distance of 2.4 cm under the 

leaf and normalized to one at 2.4 cm inside the open field.  As seen in Figure 4.3, 

the shapes of both curves appear to be very similar, especially in the region below 

the fifty percent line.  The diode array data were acquired twice because of some 

irregularity in the region of 100% dose.  The diode response was irregular in this 

region for both data acquisitions.  This could possibly be related to the method in 

which the edge function data were acquired with the diode array, i.e. it could be 

attributable to the leaf motion.  Figure 4.3 also illustrates that the film data have a 

much finer resolution than the diode array data.  The film was scanned with a 

resolution of 169 microns.  The resolution of the diode array was around two 

millimeters, which was the distance the leaf was moved between each diode 

reading when determining the edge function.  Both functions shown were from leaf 

30 on the B carriage.  Because the two edge functions had the same basic slope 

in the linear region around the fifty percent line, it was inferred that the edge
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Figure 4.3.  Comparison of edge functions produced by film and by the diode array.  Data are normalized to zero under 
the leaf and to one 2.4 cm inside the open field.  The diode array edge function was measured twice. 
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functions fitted to the film were a good estimate of the edge function and therefore 

the response determined by the diode array. 

4.2.2 Central Axis Functions vs. Off Axis Functions 

Edge functions were fitted using equations 3.1 and 3.2 for each leaf to the 

measured central axis data and to the data measured 10 cm off axis.  The data 

used to fit the functions were normalized to zero at a position 2.4 cm under the leaf 

and normalized to one at a position 2.4 cm inside the open area of the field.  To 

compare the fitted functions between leaves, two separate fitted functions were 

chosen as the standard functions, one for the leaf edge at the central axis and one 

for the leaf edge 10 cm off axis; in this case leaf 30A was used.  The fitting 

parameters for the standard functions are shown in Table 4.1.  The seventy 

percent and thirty percent positions were then determined from the functions fitted 

to the measured data for each individual leaf.  In order to determine the seventy 

percent and thirty percent positions, the inner and outer fitted functions were 

inverted and are shown in equations 4.1 and 4.2.   

Eq. 4.1 Inner: d = ln [ 2 * (1-P)] / -ain 

Eq. 4.2 Outer: d = ln [ 2 * P] / -aout 

Where d is the distance from the radiographic edge and P is the film response 

normalized to the maximum value in an open field.  

Table 4.1.  Standard function fitting parameters. 
 Central Axis 

Function 
Off Axis 
Function 

ain -4.785 -7.226 

aout -4.564 -3.498 
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The seventy percent and thirty percent positions shown in Table 4.2 and 

Table 4.3 were then plotted in Figure 4.4 along with the chosen central axis and off 

axis standard functions to compare the fits between the leaves.  As seen in Figure 

4.4, the central axis function has a different slope than the 10 cm off axis function.  

This suggested that two different curves should be used to determine the distance 

error in leaf positional reproducibility.  One standard function should be used to 

determine the distance for all of the tests in which the leaves were extended to the 

central axis and a separate function should be used for the leaves in the 10 cm off 

axis position.  The steep slope of both curves also implied that the diode array 

must be positioned within 2 mm of the fifty percent location to ensure that the 

diode being used for measurement is not in the shoulder region of the curve where 

the distance estimate would be more uncertain. 

Table 4.2.  Distances corresponding to seventy percent 
intensity.  Values are calculated from equations 4.1 and 4.2. 
Leaf Number Central Axis 10 cm Off Axis 

30A -1.07 mm -0.71 mm 
30B -1.17 mm -0.73 mm 
19A -0.91 mm -0.65 mm 
19B -0.80 mm -0.78 mm 
6A -0.91 mm -0.76 mm 
6B -0.83 mm -0.85 mm 

 

Table 4.3.  Distances corresponding to thirty percent 
intensity.  Values are calculated from equations 4.1 and 4.2. 

Leaf Number Central Axis 10 cm Off Axis 
30A 1.12 mm 1.46 mm 
30B 1.43 mm 1.45 mm 
19A 1.07 mm 1.06 mm 
19B 1.00 mm 1.30 mm 
6A 0.999 mm 1.08 mm 
6B 1.03 mm 1.23 mm 
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Figure 4.4. Comparison of edge functions fitted to central axis and 10 cm off axis data.  Seventy percent and thirty 
percent points are from fitted functions for each of six leaves tested.  Data are normalized to zero under the leaf and to 
one 2.4 cm inside the open area of the field.
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4.3 Reproducibility on the Central Axis 

Reproducibility of leaf position with the leaf extended to the central axis was 

tested for three different leaves on each of the two carriages.  Reproducibility was 

also tested for three different leaf extensions from the carriage for each of the six 

different leaves.  The diode responses were converted to a corresponding 

distance using equations 4.1 and 4.2 and the values for ain and aout shown in Table 

4.1 for the central axis standard function.  The standard deviation of the diode 

readings were calculated as the deviation from the mean of twenty-five readings 

taken with a single leaf extended to the central axis. All data were normalized to 

an open field reading before the standard deviations were calculated.  The 

standard deviations of the corresponding distances were calculated through 

propagation of error.  Propagation of error is a technique used to determine the 

error in a final result by deriving the error in each measurement or number used to 

get that result.  The error in the distance calculation is the partial derivative of 

equations 4.1 or 4.2 multiplied by the standard deviation of the diode readings.  

Table 4.4 lists the standard deviations in the diode response as well as the 

standard deviations of the distances calculated from the fitted functions. 

4.4 Reproducibility 10 cm Off Axis 

Each of the six leaves was extended to 10 cm across the central axis to 

determine the reproducibility of leaf position off axis.  Twenty-five readings were 

taken for each leaf with three different leaf extensions from the carriage.  In each 

case the edge of the extended leaf was at a position 10 cm across the central axis.  

The standard deviations of the diode readings are calculated as described for the 
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central axis case in section 4.3.  The standard deviations for the corresponding 

distances were once again calculated through propagation of error using 

equations 4.1 and 4.2. The standard deviations for the diode response as well as 

for the calculated distance are shown in Table 4.5.  

Table 4.4.  Standard deviations of the diode responses and corresponding 
distances on the central axis.  The diode response standard deviation is 
the deviation from the mean of twenty-five readings after data were 
normalized to an open field reading.  The standard deviation of the 
distance is calculated by propagation of error. 

Leaf Number Leaf Extension 
From Carriage 

Diode 
Response 
Standard 
Deviation 

Calculated 
Distance 
Standard 

Deviation (mm) 
2.0 cm 0.013 0.060 

7.5 cm 0.011 0.051 30A 

15 cm 0.012 0.055 

2.0 cm 0.010 0.045 

7.5 cm 0.018 0.081 30B 

15 cm 0.016 0.071 

2.0 cm 0.011 0.051 

7.5 cm 0.010 0.043 19A 

15 cm 0.011 0.052 

2.0 cm 0.012 0.060 

7.5 cm 0.011 0.052 19B 

15 cm 0.009 0.045 

2.0 cm 0.017 0.081 

7.5 cm 0.011 0.052 6A 

15 cm 0.010 0.046 

2.0 cm 0.014 0.060 

7.5 cm 0.012 0.052 6B 

15 cm 0.009 0.040 
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Table 4.5.  Standard deviation of the diode responses and corresponding 
distances at 10 cm off axis.  The diode response standard deviation is the 
deviation from the mean of twenty-five readings after data were normalized 
to an open field reading.  The standard deviation of the distance is 
calculated by propagation of error. 

Leaf Number Leaf Extension 
From Carriage 

Diode 
Response 
Standard 
Deviation 

Calculated 
Distance 
Standard 

Deviation (mm) 
2.0 cm 0.020 0.060 

7.5 cm 0.013 0.078 30A 

15 cm 0.014 0.043 

2.0 cm 0.014 0.080 

7.5 cm 0.011 0.033 30B 

15 cm 0.010 0.062 

2.0 cm 0.011 0.069 

7.5 cm 0.009 0.053 19A 

15 cm 0.009 0.057 

2.0 cm 0.008 0.047 

7.5 cm 0.011 0.063 19B 

15 cm 0.011 0.064 

2.0 cm 0.010 0.027 

7.5 cm 0.013 0.036 6A 

15 cm 0.011 0.030 

2.0 cm 0.008 0.022 

7.5 cm 0.011 0.032 6B 

15 cm 0.010 0.030 
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CHAPTER 5 
 

DISCUSSION 
 

 Determination of the fluctuations in the response of each diode under the 

same conditions is important because a large variation in the diode response 

would make it impossible to determine whether the reading is varying because of 

an error in leaf position or just a variance of the diode response.  The variability of 

the diode response was found to be less than seven tenths of a percent for any 

given diode.  The distance calculated from the standard function that corresponds 

to 0.7% is, on average, 0.03 mm.  This distance is much smaller than the 0.2 mm 

recommended tolerance.  The diode array should therefore be able to detect small 

changes in leaf position without concern for the variability in the diode response. 

 When comparing the edge function produced by the diode array to the edge 

function produced by film, there appears to be a slight discrepancy in the shoulder 

region above sixty percent.  This difference in the functions might result from the 

manner in which the data were collected.  The film edge function was measured 

by a single exposure of 30 cGy to the film with a single leaf extended.  The diode 

array edge function was determined by moving the leaf across a single diode in 1 

mm increments through a total distance of 4.8 cm.  The edge function produced by 

the diode array does not have as fine a resolution as the film does.  Also, there is 

some fluctuation in diode response as the curve is approaching 1.0 in the open 

field.  For the purposes of this research, the edge function produced using 

radiographic film is believed to be a more accurate representation of the actual 
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edge function of the leaf and can also be used in conjunction with the diode array 

to determine distances. 

 The tests for reproducibility were designed to test the dependence of leaf 

positional reproducibility under several different conditions.  Leaves in different 

positions within a single carriage were tested to determine whether the location of 

the leaf would make leaf position less reproducible.  The same leaves in the 

opposite carriage were tested to determine whether the two carriages had a 

different reproducibility between them.  Also the three leaves on each carriage 

were tested with three separate extensions from the other leaves in the carriage to 

determine whether the distance traveled by the leaf beyond the carriage would 

have an effect on the reproducibility.  All of these tests were conducted with the 

leaf extended to the central axis and with the leaf extended 10 cm beyond the 

central axis to compare the reproducibility between these two leaf positions.  The 

results show that the standard deviations of the diode readings for all of the tests 

conducted are less than two percent.  There is no apparent dependence of leaf 

reproducibility on the leaf extension, location in the carriage or central axis versus 

off axis position.  The standard deviation of the distances calculated from the 

standard curve is less than 0.1 mm, which is well within the recommended 

tolerance of 0.2 mm. 

 The small variability in the results of each of the different tests indicates that 

the leaf position is very reproducible.  When the readings from the diode array are 

converted into distances using the pre-determined standard functions, it is shown 

that the diode array is capable of detecting very small shifts in leaf position, 
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smaller than tenths of a millimeter.  The diode array is therefore sensitive enough 

to shifts in leaf position to be effective in a quality assurance process. 
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CHAPTER 6 
 

CONCLUSIONS 
 

 It has been shown in this research that the edge function of a single leaf in 

the multileaf collimator can be measured using film.  A standard function can be 

used to represent all of the leaves on the central axis and a different standard 

function should be used to represent the leaves at a position 10 cm off axis.  It has 

also been shown that the edge function produced by the film is applicable to the 

data acquired from the diode array.  Using this approach, the data from the 

digitized film edge function can be fitted to a function and then used to determine a 

distance corresponding to the readings from the diode array.   

The method described above is sensitive enough to detect errors in leaf 

position as small as a tenth of a millimeter.  The tolerance of variability in leaf 

position is recommended in the literature to be 0.2 mm to ensure proper dose 

delivery.  The diode array is therefore sensitive enough to determine the positional 

reproducibility of individual leaves at locations both on and off the central axis. 

This method can be developed into a quality assurance procedure that 

could quickly and easily detect errors in leaf positional reproducibility before it 

exceeds the tolerance of the machine.  Before a quality assurance procedure is 

adopted to test the multileaf collimator, it must meet certain requirements.  First, it 

must be sensitive enough to detect small changes, which the diode array has 

already been shown to do.  Second, it must be quick and easy enough to be 

performed on a regular basis in a clinical setting.  The diode array is faster than 

film for quality assurance purposes because the data can be analyzed directly 
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without the inconvenience of having to develop and digitize film.  The diode array 

can also be easily mounted to the gantry or aligned on the treatment couch.  The 

person performing the quality assurance procedure would not have to re-enter the 

room between sequential exposures.  The multileaf collimator can be programmed 

to move to certain test positions and the diode array readings can be taken and 

recorded from outside the treatment room.  Use of a diode array can therefore 

reduce the acquisition time as well as the time required for analysis. 

A routine quality assurance procedure to test multileaf positional 

reproducibility can be very useful in a clinical setting.  Machine tolerances are set 

to 2 mm error in leaf position.  As stated previously, a 2 mm error can translate 

into large dose errors across the entire treatment field.  The quality assurance 

procedure described here could catch very small leaf errors that could be 

corrected before any dose delivery errors are made.  Also, leaf errors caused by 

an individual leaf’s motor failure can be caught before the motor fails completely.  

In cases where the motor becomes inoperable, the machine must be down until 

the motor is replaced.  If the error is caught before the motor fails, the motor can 

be replaced in the machine’s off time to avoid any patient treatment delays. 

In conclusion, the diode array can be used in conjunction with an edge 

function determined from radiographic film to develop a quality assurance 

procedure. This procedure using the diode array is sensitive enough to measure 

small shifts in leaf position and can be performed in an acceptable amount of time 

to easily take routine measurements. 
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