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1 Introduction
Integration by parts is a technique for integrating products of two functions. Although
the technique is fairly straightforward, it can be tedious to perform by hand, requiring
both differentiation and integration. The DI, or tabular, method is a way to organize
the computations involved in performing integration by parts. The functionality of TI-
Nspire’s Lists and Spreadsheets application can be used to automate the DI Method
and to simplify integrating products of two functions.

This article describes integration by parts in general, then describes how to perform
integration by parts with the DI Method. Next, the article describes how to configure
a TI-Nspire spreadsheet to automate the DI Method. Finally, examples are presented
that show how to use the spreadsheet to integrate products of functions for which inte-
gration by parts can be used.

The TI-Nspire document that accompanies this article contains the examples described
in this article, and requires the CAS version of TI-Nspire.

2 Integration by Parts

2.1 Derivation
The formula for integration by parts is derived from the product rule for differentiat-
ing the product of two functions: d

dx [ f (x)g(x)] = f ′(x)g(x)+ f (x)g′(x). Solving this
equation for f (x)g′(x) then integrating both sides of the equation yields the formula for
integration by parts:

f (x)g′(x) =
d
dx

[ f (x)g(x)]− f ′(x)g(x) (1)∫
f (x)g′(x)dx =

∫ d
dx

[ f (x)g(x)]−
∫

f ′(x)g(x)dx (2)∫
f (x)g′(x)dx = f (x)g(x)−

∫
g(x) f ′(x)dx (3)

Equation (3) is the formula for integrating by parts. The equation is simplified using
substitution, resulting in the standard textbook formula for integration by parts:

Let u = f (x), then du = f ′(x)dx
Let dv = g′(x)dx, then v =

∫
g′(x)dx = g(x)

With these substitutions, the formula for integration by parts simplifies to∫
udv = uv−

∫
vdu

Notice that the solution to
∫

udv contains an integral,
∫

vdu. Often, solving the integral∫
vdu will also require integration by parts. Because of this, solving

∫
udv may require

repeated use of the technique. Occasionally,
∫

vdu will be a multiple of
∫

udv which
requires algebraically manipulating the result to arrive at a solution.
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2.2 Examples
The following examples illustrate how to evaluate indefinite integrals using integration
by parts.

Example 2.2.1. Evaluate
∫

xsin(x)dx.

Solution:

Let u = x, then du = dx
Let dv = sin(x)dx, then v =

∫
sin(x)dx =−cos(x)

Note: substituting u for x and equating
∫

xsin(x)dx with
∫

udv implies dv = sin(x)dx.

Integration by parts using these substitutions is∫
xsin(x)dx =−xcos(x)−

∫
(−cos(x))dx

=−xcos(x)+
∫

cos(x)dx

= sin(x)− xcos(x)

Adding the required constant of integration, the solution is∫
xsin(x)dx = sin(x)− xcos(x)+C

Example 2.2.2. Evaluate
∫

x2 sin(x)dx.

Solution:

Let u = x2, then du = 2xdx
Let dv = sin(x)dx, then v =

∫
sin(x)dx =−cos(x)

Integration by parts using these substitutions is∫
x2 sin(x)dx =−x2 cos(x)−

∫
(−cos(x))2xdx

=−x2 cos(x)+2
∫

xcos(x)dx

At this point, the right-hand side of the equation contains an integral that also requires
integration by parts:

∫
xcos(x)dx. To evaluate this integral,

Let u = x, then du = dx
Let dv = cos(x)dx, then v = sin(x)
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With these substitutions and continuing the process,∫
x2 sin(x)dx =−x2 cos(x)−

∫
(−cos(x))2xdx

=−x2 cos(x)+2
∫

xcos(x)dx

=−x2 cos(x)+2[xsin(x)−
∫

sin(x)dx]

=−x2 cos(x)+2[xsin(x)− (−cos(x))]

=−x2 cos(x)+2[xsin(x)+ cos(x)]

=−x2 cos(x)+2cos(x)+2xsin(x)

Adding the constant of integration, the solution is∫
x2 sin(x)dx =−x2 cos(x)+2cos(x)+2xsin(x)+C

Example 2.2.3. Evaluate
∫

sin(x)exdx.

Solution:

Let u = sin(x), then du = cos(x)dx
Let dv = exdx, then v = ex

Integration by parts using these substitutions is∫
sin(x)exdx = sin(x)ex−

∫
ex cos(x))dx

The right-hand side of the equation contains an integral requiring integration by parts:∫
ex cos(x))dx. To evaluate this integral,

Let u = cos(x), then du =−sin(x)dx
Let dv = exdx, then v = ex

Substituting these values into the equation and continuing∫
sin(x)exdx = sin(x)ex−

∫
ex cos(x))dx

= sin(x)ex− [cos(x)ex−
∫

ex(−sin(x)dx]

= sin(x)ex− [cos(x)ex +
∫

ex sin(x)dx]

= sin(x)ex− cos(x)ex−
∫

ex sin(x)dx

After this evaluation, the right-hand side of the equation contains an integral that is
equal to the integral being evaluated:

∫
ex sin(x)dx =

∫
sin(x)exdx. Thus continuing
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to integrate by parts would never end. However, the last equation can be solved alge-
braically by adding

∫
ex sin(x)dx to both sides of the equation:∫

sin(x)exdx+
∫

ex sin(x)dx = sin(x)ex− cos(x)ex−
∫

ex sin(x)dx+
∫

ex sin(x)dx

2
∫

sin(x)exdx = sin(x)ex− cos(x)ex∫
sin(x)exdx =

1
2
[sin(x)ex− cos(x)ex]

After rearranging the equation and adding the integration constant, the solution is∫
sin(x)exdx =

ex sin(x)
2

− ex cos(x)
2

+C

3 Considerations
When confronted with an integral that is the product of two functions, the first thing to
consider is whether or not integration by parts is the correct approach to evaluate the
integral. For many such integrals, substitution is the technique to use1. As an example,
the integral

∫
x2 sin(x3)dx which appears to be a good candidate for integration by parts

can be easily evaluated using the substitution rule.

Once the decision to use integration by parts is made, several issues need to be consid-
ered before applying the technique:

1. Which of the two functions f (x) and g(x) to choose for u and dv.

2. When to stop the process if repeated application of integration by parts is re-
quired.

3.1 Choosing u and dv

The choice of which function to use for u and which to use for dv in the equation∫
udv =

∫
f (x)g′(x)dx can make integration by parts an easy or difficult task. For some

integrals, the wrong choice can render the task difficult or impossible to complete. A
general rule for the choice is to choose u as the function that is simpler when differen-
tiated or choose dv as the function that is simpler when integrated [4]. A more specific
rule of thumb for the choice is exemplified by the LIATE rule: choose u as the function
that appears first in the following list and choose dv as the function that is last in the
list[4]:

1 The substitution rule is appropriate for integrals of the form
∫

f (g(x))g′(x)dx
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Abbreviation Function Type Examples

L logarithmic lnx, log10(x)

I inverse trigonometric arcsin(x),arctanx

A algebraic x2,5x2 + x+1

T trigonometric sin(x),cos(x)

E exponential ex,8x

A few examples of choices for u and dv using the LIATE rule are

Integral u dv∫
x ln(x)dx ln(x) xdx∫
e2x cos(x) cos(x) e2xdx∫
x2 sin(x)dx x2 sin(x)dx∫
arcsin(x)dx arcsin(x) dx

3.2 Stopping the Process
For many integrals, integration by parts must be repeated several times before a solution
is found. In this case, knowing when to stop the process is important. There are three
conditions when the process should be stopped:

1. When the integral
∫

vdu can be integrated without applying integration by parts.

2. When the integral
∫

vdu is equal to or a multiple of the integral being evaluated.
When this happens, the solution is found by solving the resulting equation al-
gebraically. See Example 2.2.3, the example of integrating

∫
sin(x)exdx, to see

how the equation is solved.

3. When the derivative and/or integral becomes more complex with each iteration.
In this case, either a bad choice for u or dv was made, or integration by parts may
not be the appropriate method for evaluating the integral.

4 Integration by Parts for Definite Integrals
Integration by parts for definite integrals is defined as follows∫ b

a
udv = (uv)|ba−

∫ b

a
vdu

= u(b)v(b)−u(a)v(a)−
∫ b

a
vdu
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The only difference between evaluating definite and indefinite integrals is that for def-
inite integrals, the evaluation includes calculating the value of the integral using the
lower and upper bounds of the definite integral. The calculation can be performed
either during each step of the process with the intermediate result, or at the end of
the process with the final result. When repeated application of integration by parts
is required, calculating (uv)|ba at each step of the process becomes cluttered and error
prone. Because of this, deferring the calculation of the value of the definite integral un-
til the final result (the antiderivative) has been found is simpler and less subject to error.

Example 2.2.3, demonstrating how integrating
∫

sin(x)exdx requires several repetitions
of integration by parts, along with algebraically solving for the solution, provides a
good example of deferring evaluation of a definite integral until the antiderivative is
found.

Example 4.0.1. Evaluate
∫

π

0 sin(x)exdx.

Solution:

In Example 2.2.3, the antiderivative of
∫

sin(x)exdx (without the constant of integra-
tion) was found to be

ex sin(x)
2

− ex cos(x)
2

The value of the definite integral is calculated using the Fundamental Theorem of Inte-
gral Calculus2:∫

π

0
sin(x)exdx =

[
ex sin(x)

2
− ex cos(x)

2

]∣∣∣∣π
0

=

[
eπ sin(π)

2
− eπ cos(π)

2

]
−
[

e0 sin(0)
2

− e0 cos(0)
2

]
=

eπ

2
−
(
−1

2

)
=

eπ

2
+

1
2

5 The DI Method
The DI, or Tabular Method organizes each step of integration by parts in a table. An
example demonstrating how the table is set up and how the steps in the process are
captured in rows of the table follows.

Example 5.0.1. Find the antiderivative of
∫

x2 sin(x)dx using the DI Method.

Initializing the Table: The function chosen as u is placed in one column and the
function chosen as dv is placed in an adjacent column, and another column containing

2 ∫ b
a f (x)dx = F(b)−F(a) where F(x) is an antiderivative of f (x).
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the multiplier for the sign of the products uv and vdu is placed in a third column. Based
on the LIATE rule, for this integral, x2 is chosen as u and sin(x) is chosen as dv. The
initial table with these values is

index u dv sign

0 x2 sin(x)

After the table is initialized, each step in the process is performed by adding a row to
the table containing the following entries: the derivative of the preceding entry in the u
column, the integral of the preceding entry in the dv column, and an alternating sign in
the third column, beginning with a + sign.

The Table after Step 1:

index u dv sign

0 x2 sin(x)

1 2x −cos(x) +

After a new row is added to the table, all the components for integration by parts is
in the table: the value for u is in row index− 1, the value for du is in row index, the
value for v is in row index, and the multiplier for the sign of uv and vdu is in row
index. For this example, after step 1, u = x2,v = −cos(x),uv = −x2 cos(x),du = 2x
and vdu =−cos(x)2x. Notice that uv is calculated by multiplying diagonal entries in
the u column and the dv column: the u(0) entry times the dv(1) entry. The intermediate
value for the integral is

−x2 cos(x)+2
∫

cos(x)xdx

The process of adding a row and calculating values continues as long as the integral∫
vdu requires integration by parts or until it is equal to or a multiple of the original

integral.

The Table after Step 2:

index u dv sign

0 x2 sin(x)

1 2x −cos(x) +

2 2 −sin(x) −

After step 2, the values for the intermediate calculation are u = 2x,v = −sin(x),du =
2, the multiplier for uv and vdu is −1, so uv = −(−2xsin(x)) = 2xsin(x),vdu =
−(−2sin(x)) = 2sin(x) and the intermediate value for the integral is

−x2 cos(x)+2xsin(x)−2
∫

sin(x)dx
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Since
∫

sin(x)dx can be easily integrated, the process could be stopped at this point.
However, since polynomials can be differentiated until their derivative equals 0, one
more step can be performed, yielding the final result.

The Table after Step 3:

index u dv sign

0 x2 sin(x)

1 2x −cos(x) +

2 2 −sin(x) −

3 0 cos(x) +

After step 3, the values for the calculation are u = 2,v = cos(x),du = 0, the multiplier
for the sign of uv and vdu is +1, so uv = 2cos(x),vdu = 0 and the final value for the
integral is

−x2 cos(x)+2xsin(x)+2cos(x)−
∫

0dx =−x2 cos(x)+2xsin(x)+2cos(x)

6 Additional Information
For theoretical justification of the DI Method along with examples of applying the
method, see the reference article ”The Tabular Method for Repeated Integration by
Parts”[1]. The web page ”Integration by Parts”[4] contains excellent descriptions of
integration by parts, including descriptions of the LIATE Rule and the Tabular Method,
and provides usage examples. The book, Calculus II for Dummies[5], describes the DI
Method in detail and presents examples of using the method to integrate products com-
posed of logarithmic, inverse trigonometric, algebraic, and trigonometric functions.

7 The DI Method with TI-Nspire
TI-Nspire’s Lists and Spreadsheets application can be configured to perform integra-
tion by parts with the DI Method. This section shows how to configure a spreadsheet
to perform each step in the process and automatically carry out all the required calcu-
lations.

7.1 Configuring the Spreadsheet
The following images and explanations show how to configure a TI-Nspire spreadsheet
to find the antiderivative of an indefinite integral with the DI Method. The integral∫
(3x+5)cos( x

4 )dx from ”Calculus II”[2] is used as an example. For this integral, the
polynomial 3x+5 is chosen as the value for u and cos( x

4 )dx is chosen as the value for
dv.
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To begin, create a new document and add a spreadsheet to the document (optionally,
use a split page containing a spreadsheet and a Calculator page or a Notes page). Add
labels to columns A thru F of the spreadsheet. The values in each column in a spread-
sheet are stored in a list and the column labels are the names of the lists. The labels are
used to refer to the lists in a Calculator or Notes page. The contents of the columns are:

Column Label Contents

A u u and derivatives of u (du)

B dv dv and integrals of dv (v)

C pm Multiplier for sign of u times v and v times du

D uv Product of u,v and pm

E vdu Product of v,du and pm

F sum uv Sum of uv

Enter the values in row 1 of the spreadsheet as shown in Figure 1. The initial configu-
ration of the spreadsheet is

Figure 1: Initial Spreadsheet Configuration

Completing the configuration of the spreadsheet requires defining the formulas to per-
form the integration by parts calculations. These calculations consist of differentiating
u, integrating dv, finding the products uv and vdu, and adding the products uv. The
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formulas for these calculations are entered by typing the expressions for the formulas
in cells in row 2 of the spreadsheet. The formulas are defined using relative cell ref-
erences. When a relative cell reference is copied, the cell reference is automatically
updated[3]. Figure 2 shows how a formula with a relative cell reference can be used to
find all the derivatives of a function in a spreadsheet column.

(a) References Cell A1 (b) References Cell A2

(c) References Cell A3
(d) Final Result

Figure 2: Derivatives Using Relative Cell References

As shown in Figure 2a, the function to differentiate is entered in cell A1 and the for-
mula for the derivative of the function is entered in cell A2, referencing the contents
of cell A1 (the function to differentiate). After cell A2 is entered, the derivative of
the function in cell A1 is calculated. Next, cell A2 is selected and copied to cell A3.
The reference to A1 is automatically updated to reference cell A2 and the derivative of
the function in cell A2 is calculated. Finally, selecting and copying cell A3 to cell A4
results in the reference to A2 being automatically updated to reference cell A3 and the
derivative of the function in cell A3 is calculated. Note that the formula for finding the
derivative was only explicitly entered once, in cell A2. The spreadsheet automatically
updated the relative cell reference and calculated the next derivative when a cell was
copied.

The following images and descriptions illustrate how to complete configuring the spread-
sheet to perform integration by parts using relative cell references.

Differentiating u:

The derivatives of u,3x+ 5, are calculated in Column A, and the formula for calcu-
lating the derivatives using relative referencing is placed in cell A2. The formula is
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entered by placing the cursor in cell A2, then double-clicking the derivative template
in the Math Templates panel. Figure 3 depicts the spreadsheet after the formula is
entered.

Figure 3: Differentiating u

Integrating dv:

The integrals of dv,cos( x
4 ), are calculated in Column B, and the formula for calculating

the integrals using relative referencing is placed in cell B2. The formula is entered by
placing the cursor in cell B2, then double-clicking the indefinite integral template in the
Math Templates panel. Figure 4 depicts the spreadsheet after the formula is entered.

Figure 4: Integrating dv

Specifying the multiplier for the sign of uv and vdu:

The sign of the products uv and vdu alternates between plus and minus when repeated
integration by parts is required. The sign is calculated in Column C, with initialization
value placed in cell C1 and the formula for the sign entered in cell C2 using relative
referencing as −1 ∗C1. The entry is either typed directly in cell C2 or typed in the
entry line at the bottom of the spreadsheet. Figure 5 shows the spreadsheet after the
formula for the sign is entered.
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Figure 5: Specifying the sign of uv

Finding the product uv:

The initial value of u is in cell A1, the initial value of v is in cell B2, and the ini-
tial multiplier for the sign of uv is in cell C2. The relative cell reference for the initial
value of uv is A1*B2*C2 which is the formula placed in cell D2 as shown in Figure 6.

Figure 6: Finding the product uv

Finding the product vdu:

The initial value of du is in cell A2, the initial value of v is in cell B2, and the ini-
tial multiplier for the sign of vdu is in cell C2. The relative cell reference for the initial
value of the integrand vdu is A2*B2*C2 which is the formula placed in cell E2 as
shown in Figure 7.
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Figure 7: Finding the product vdu

Summing the products uv:

The cumulative sum of the product of u and v is calculated with relative cell refer-
ences in Column F. Cell F1 contains the initial sum 0 and cell D2 contains the initial
value for uv. The formula for accumulating the sum with relative cell references is
F1+D2 which is the formula entered in cell F2 as shown in Figure 8.

Figure 8: Summing the products uv

After the entry for cell F2 is entered, the configuration for the spreadsheet is complete
and the initial calculations are finished. The spreadsheet appears as displayed in Figure
9.
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Figure 9: Configured Worksheet with Initial Calculations

7.2 Evaluating an Integral with the Spreadsheet
After completely configuring the spreadsheet, evaluating the indefinite integral is ac-
complished by copying each cell to the next row in left-to-right order: cell A2 is copied
to cell A3, cell B2 is copied to cell B3, ..., cell F2 is copied to cell F3. As each cell is
copied, the relative references are automatically updated and new values for the cells
are automatically calculated. This process is displayed in the following figures.

Figure 10: Copying Cell A2 to Cell A3

As shown in Figure 10, the simplest and most efficient way to copy a cell to the fol-
lowing row is by moving the cursor to the bottom, right side of the cell, selecting
the cell with the mouse, then dragging the bottom of the cell into the next row. The
cursor changes to a + when the cell is selected. When the mouse button is released,
the contents of the copied cell are added to the target cell, the relative references are
automatically updated, and the new value is added to the cell as shown in Figure 11.
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Figure 11: Copying Cell B2 to Cell B3

The same technique for copying cell A2 to cell A3 is applied to cells B2 thru F2, in
left-to-right order. After copying cells B2 to B3, C2 to C3, D2 to D3, E2 to E3, and F2
to F3, the spreadsheet appears as shown in Figure 12.

Figure 12: The Spreadsheet after Copying Cell F2 to Cell F3

For this example, both du and vdu are now equal to 0 and integration by parts is com-
plete. Since

∫
vdu is equal to 0, the value of the indefinite integral (without the constant

of integration) is equal to the cumulative sum of uv, which is the value displayed in cell
F3. The result is verified by calculating the integral in a Calculator page as shown in
Figure 13.
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Figure 13: Verifying the Final Result in a Calculator Page

7.3 Notes
1. Copying cells in left-to-right column order (A,B,C,D,E,F) is necessary because the
formula in cell D2 references cells A1, B2, and C2, the formula in cell E2 references
cells A2, B2, and C2, and the formula in cell F2 references cell D2.

2. Although copying and pasting cells using the copy and paste menu items (or the
keyboard shortcuts ctrl-c, ctrl-v) is supported by the Lists & Spreadsheet application,
copying cells D2 and E2 using these techniques fails even though copying by selecting
and dragging succeeds.

3. For some integrals, repeated application of integration by parts results in the in-
tegral

∫
vdu being equal to or a multiple of the integral being evaluated. The value vdu

is calculated in column D of the worksheet. Thus, after a cell in column D is copied
and its value displayed, the value should be examined to determine if it is equal to or a
multiple of the integral being evaluated. If this is the case, then the last results should
be used to algebraically find the value of the integral. See Example 2.2.3 and Example
8.0.2 for examples of how to find the value of such integrals.

4. Some integrals will require evaluating multiple integrals to find the value of the
original integral. Example 8.0.5 and Example 8.0.6 show how to solve this type of
integral.
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8 Examples
The following examples show how to use the LIATE Rule and the DI method in a TI-
Nspire spreadsheet to evaluate various integrals.

Example 8.0.1. Evaluate
∫

x4 sin(x)dx.

Discussion:

Choose x4 as u and sin(x) as dv and configure a TI-Nspire spreadsheet as described
above, then copy spreadsheet cells until the derivative of u equals zero. The value of
the indefinite integral (without the constant of integration) is then equal to the sum of
uv. Figure 14 shows the final result of the process.

Figure 14: Evaluation of
∫

x4 sin(x)dx with the DI Method
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Example 8.0.2. Evaluate
∫

sin( x
2 )e

2xdx.

Discussion:

Choose sin( x
2 ) as u and e2x as dv and configure a TI-Nspire spreadsheet, then copy

spreadsheet cells until the integrand vdu equals a multiple of the integrand of sin( x
2 )e

2x.
The value of the indefinite integral (without the constant of integration) is then calcu-
lated algebraically. Figure 15 shows the final result of the process.

Figure 15: Evaluation of
∫

sin( x
2 )e

2xdx with the DI Method
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Example 8.0.3. Evaluate
∫

x ln(x2)dx.

Discussion:

Choose ln(x2) as u and x as dv and configure a TI-Nspire spreadsheet. When con-
figuration is complete, the value of vdu is just x, which is easy to integrate. The value
of the indefinite integral (without the constant of integration) is then simply calculated
as uv−

∫
vdu. Figure 16 shows the final result of the process.

Figure 16: Evaluation of
∫

x ln(x2)dx with the DI Method
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Example 8.0.4. Evaluate
∫

arctan(x)dx.

Discussion:

At first glance, the integrand does not appear to be a product and the integral does
not seem to be a candidate for integration by parts. However, the integrand can be writ-
ten as the product of arctan(x) and 1dx = dx. Choose arctan(x) as u and 1 as dv and
configure a TI-Nspire spreadsheet. When configuration is complete, the value of vdu
is x

x2+1 , which can be integrated using substitution. The value of the indefinite integral
(without the constant of integration) is then simply calculated as uv−

∫
vdu. Figure 17

shows the final result of the process.

Figure 17: Evaluation of
∫

arctan(x)dx with the DI Method
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Example 8.0.5. Evaluate
∫

x3 ln(x)2dx.

Discussion:

Choose ln(x)2 as u and x3 as dv and configure a TI-Nspire spreadsheet. After per-
forming several iterations of the integration process, both du and vdu become more
complex and the iteration fails to produce a value for the integral. Figure 18 shows the
result of the process. Examining the results reveals that v5du5 (in row 2 of the spread-
sheet) is an integrable product. There are two approaches to evaluating

∫
x3 ln(x)2dx:

evaluate the integral
∫

x3 ln( x
2 )dx and subtract the result from x4 ln(x)2

4 (the value of u5v5
in row 2), or try evaluating the integral with u = x3 and dv = ln(x)2. Figure 19 shows
the result of the first approach and Figure 20 shows the result of the second approach.

Figure 18: Evaluation of
∫

x3 ln(x)2dx with the DI Method
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Example 8.0.6. Evaluate
∫

x3 ln( x
2 )dx.

Discussion:

Continuation of Example 8.0.5. Choose ln( x
2 ) as u and x3 as dv and configure a TI-

Nspire spreadsheet. Evaluate the integral
∫

x3 ln( x
2 )dx and subtract the result from

x4 ln(x)2

4 (the value of u5v5 in row 2 of Figure 18). Figure 19 shows the result.

Figure 19: Evaluation of
∫

x3 ln( x
2 )dx with the DI Method
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Example 8.0.7. Evaluate
∫

x3 ln(x)2dx.

Discussion:

Alternative approach to evaluating
∫

x3 ln(x)2dx (Example 8.0.5). Choose x3 as u and
ln(x)2 as dv and configure a TI-Nspire spreadsheet. Copy spreadsheet cells until du,
the derivative of u equals zero. The value of the antiderivative without the constant of
integration is then the sum of the products of u and v. Figure 20 shows the result.

Figure 20: Alternative Evaluation of
∫

x3 ln(x)2dx with the DI Method
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